Support or Oppose:Formation Mechanism of Social Media Users’ Opinions

AN Lu, ZHANG Siyu

LIBRARY TRIBUNE ›› 2024, Vol. 44 ›› Issue (3) : 199-210.

PDF(2564 KB)
PDF(2564 KB)
LIBRARY TRIBUNE ›› 2024, Vol. 44 ›› Issue (3) : 199-210.

Support or Oppose:Formation Mechanism of Social Media Users’ Opinions

  • AN Lu, ZHANG Siyu
Author information +
History +

Abstract

Exploring the mechanism of social media users’opinion formation,and revealing the important factors influencing netizens’opinion formation can provide insights into the behaviour patterns of online users and the nature of online public opinion. Using Weibo posts on the topic of“double reduction”(namely,easing the burden of excessive homework and off-campus tutoring for students undergoing compulsory education) as the data source,this article explores users’opinions through a topic model and the sentiment analysis method based on machine learning. It creates feature variables from the perspectives of opinion atmosphere,social relationships,early behavioural characteristics and user attributes,and establishes emotion prediction models under different topics based on LightGBM. By ranking the importance of the features by means of SHapley Additive ExPlanations (SHAP),it discovers the essential factors that affect the formation of social media users’opinions. The study found that users’ opinions are more likely to be influenced by the characteristics of early behaviour,followed by the opinion atmosphere,and that social relationships,i.e. friends,have a weak impact;individuals are more likely to follow larger social media influencers than to worship authority in terms of emotional tendencies.

Key words

opinion formation mechanism / online users / social media / opinion expression

Cite this article

Download Citations
AN Lu, ZHANG Siyu. Support or Oppose:Formation Mechanism of Social Media Users’ Opinions[J]. LIBRARY TRIBUNE, 2024, 44(3): 199-210

References

[1] 中国互联网络信息中心.第49次《中国互联网络发展状况统计报告》[R/OL].[2022-11-01]. http://www.cnnic.cn/NMediaFile/old_attach/P020220721404263787858.pdf.
[2] 李玥琪,王晰巍,王小天,等.突发事件情境下的社交媒体风险管理[J].图书馆论坛,2022,42(8):119-128.
[3] 王来华,林竹,毕宏音.对舆情、民意和舆论三概念异同的初步辨析[J].新视野,2004(5):64-66.
[4] 张倩楠,杨尊琦,史浩.有限理性转发者的社会网络舆情演化分析[J].情报杂志,2014,33(9):129-134.
[5] BROWN J J,REINGEN P H.Social ties and word-of-mouth referral behavior[J]. Journal of Consumer Research,1987,14(3):350-362.
[6] 赵荣,潘薇.两级传播理论在情报用户研究中的引入[J].农业图书情报学刊,2007,19(2):22-24.
[7] NOELLE NEUMANN E.The spiral of silence:A theory of public opinion[J]. Journal of Communication,1974,24(2):43-51.
[8] GLYNN C J."Elisabeth Noelle-Neumann":The spiral of silence(Book Review)[J]. Social Forces,1986,64(3):828-829.
[9] 谢新洲. “沉默的螺旋”假说在互联网环境下的实证研究[J]. 现代传播,2003(6):17-22.
[10] KENNAMER J D.Self-serving biases in perceiving the opinions of others:Implications for the spiral of silence[J]. Communication Research,1990,17(3):393-404.
[11] CHAMBERS J R.Explaining false uniqueness:Why we are both better and worse than others[J]. Social and Personality Psychology Compass,2008,2(2):878-894.
[12] NEUBAUM G,KRÄMER N C. Monitoring the opinion of the crowd:Psychological mechanisms underlying public opinion perceptions on social media[J]. Media Psychology,2017,20(3):502-531.
[13] 贾生华,陈宏辉.利益相关者的界定方法述评[J].外国经济与管理,2002,24(5):13-18.
[14] 郑昌兴,苏新宁,刘喜文.突发事件网络舆情分析模型构建——基于利益相关者视阈[J].情报杂志,2015,34(4):71-75.
[15] 方洁,龚立群,魏疆.基于利益相关者理论的微博舆情中的用户分类研究[J].情报科学,2014, 32(1):18-22.
[16] 任立肖,张亮.食品安全突发事件网络舆情的分析模型——基于利益相关者的视角[J].图书馆学研究,2014,324(1):65-70.
[17] VIGNAL LAMBRET C,BARKI E.Social media crisis management:Aligning corporate response strategies with stakeholders’ emotions online[J]. Journal of Contingencies and Crisis Management,2018,26(2):295-305.
[18] 安璐,杜廷尧,李纲,等.突发公共卫生事件利益相关者在社交媒体中的关注点及演化模式[J].情报学报,2018,37(4):394-405.
[19] LIU M,RONG L.An online multi-dimensional opinion dynamic model with misinformation diffusion in emergency events[J]. Journal of Information Science,2021,48(5):640-659.
[20] 刘举胜,何建佳,韩景倜,等. 观点动力学研究现状及进展述评[J].复杂系统与复杂性科学,2021,18(2):9-20.
[21] KIM S M,HOVY E.Determining the sentiment of opinions[C]//COLING’04:Proceedings of the 20th International Conference on Computational Linguistics. Stroudsburg,PA:Association for Computational Linguistics,2004:1367-1373.
[22] 黄传超,胡斌,闫钰炜,等.网络暴力下突发事件中观点决策与舆情反转[J].管理工程学报,2019,33(1):252-258.
[23] 邵鹏,胡平.复杂网络特殊用户对群体观点演化的影响[J]. 电子科技大学学报,2019,48(4):604-612.
[24] 李亚男,戴建华. 基于动态参考点的网络舆情个体观点演化建模研究[J].情报理论与实践,2020,43(11):122-128.
[25] 陈旭辉,柯惠新. 网民意见表达影响因素研究——基于议题属性和网民社会心理的双重视角[J]. 现代传播(中国传媒大学学报),2013,35(3):117-122.
[26] WANG G,WANG Y,LIU K,et al.Multidimensional influencing factors of public opinion information dissemination in social media:Evidence from Weibo dataset[J]. International Journal of Modern Physics B,2019,33(31):1950375.
[27] 邓春林,周舒阳,隆征帆.基于情绪归因理论的突发事件微博用户情绪演化分析[J].科技情报研究,2021,3(3):60-72.
[28] 徐新然,纪雪梅,李长荣.社交媒体中社交关系对突发事件舆论表达的影响——基于平衡理论的研究[J]. 情报资料工作,2019,40(6):51-62.
[29] YAN X,GUO J,LAN Y,et al.A biterm topic model for short texts[C]//WWW’13:Proceedings of the 22nd international conference on World Wide Web. New York:ACM,2013:1445-1456.
[30] 朱晓霞,宋嘉欣,张晓缇.基于主题挖掘技术的文本情感分析综述[J]. 情报理论与实践,2019,42(11):156-163.
[31] 安璐,胡俊阳,李纲.基于主题一致性和情感支持的评论意见领袖识别方法研究[J].管理科学,2019,32(1):3-13.
[32] 纪雪梅,翟冉冉,王芳.突发公共事件政务微博回应方式对公众评论情感的影响研究[J].情报理论与实践,2020,43(12):126-132.
[33] 徐红霞,于倩倩,钱力. 基于主题模型和情感分析的话题交互数据观点对抗性分析[J]. 数据分析与知识发现,2020,4(7):110-117.
[34] 高俊峰,黄微.网络舆情信息受众情感极化的生发机理及干预措施分析[J]. 情报理论与实践,2019,42(5):122-127.
[35] TIAN H,GAO C,XIAO X,et al.SKEP:sentiment knowledge enhanced pre-training for sentiment analysis[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg,PA:Association for Computational Linguistics,2020:4067-4076.
[36] 安璐,欧孟花.突发公共卫生事件利益相关者的社会网络情感图谱研究[J].图书情报工作,2017,61(20):120-130.
[37] 安璐,胡俊阳,李纲. 突发事件情境下社交媒体高影响力用户画像研究[J]. 情报资料工作,2020,41(6):6-16.
[38] WANG Z,LIU H,LIU W,et al.Understanding the power of opinion leaders’ influence on the diffusion process of popular mobile games:Travel Frog on Sina Weibo[J]. Computers in Human Behavior,2020,109:106354.
[39] FIEDLER K.Beware of samples! A cognitive-ecological sampling approach to judgment biases[J]. Psychological Review,2000,107(4):659-676.
[40] SHAH A K,OPPENHEIMER D M.Heuristics made easy:An effort-reduction framework[J]. Psychological Bulletin,2008,134(2):207-222.
[41] XIONG J,FENG X,TANG Z.Understanding user-to-user interaction on government microblogs:An exponential random graph model with the homophily and emotional effect[J]. Information Processing & Management,2020,57(4):102229.
[42] DONG W,HUANG Y,LEHANE B,et al.XGBoost algorithm-based prediction of concrete electrical resistivity for structural health monitoring[J]. Automation in Construction,2020,114:103155.
[43] KE G,MENG Q,FINLEY T,et al.Lightgbm:A highly efficient gradient boosting decision tree[C]//NIPS’17:Proceedings of the 31st International Conference on Neural Information Processing Systems. New York:Curran Associates Inc.,2017:3149-3157.
[44] LUNDBERG S M,LEE S I.A unified approach to interpreting model predictions[C]//NIPS’17:Proceedings of the 31st International Conference on Neural Information Processing Systems. New York:Curran Associates Inc.,2017:4768-4777.
PDF(2564 KB)

113

Accesses

0

Citation

Detail

Sections
Recommended

/